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1. Introduction. Most prominent among the classical problems in additive num-
ber theory are those of Waring and Goldbach type. Although use of the Hardy-
Littlewood method has brought admirable progress, the finer questions associated
with such problems have yet to find satisfactory solutions. For example, while the
ternary Goldbach problem was solved by Vinogradov as early as 1937 (see Vino-
gradov [16], [17]), the latter’s methods permit one to establish merely that almost
all even integers are the sum of two primes (see Chudakov [4], van der Corput [5]
and Estermann [7]). Subsequent investigations have resulted in sharper estimates
for the number of possible exceptions. In particular, on writing E1(N) for the
number of even natural numbers not exceeding N which are not the sum of two
primes, we have the celebrated theorem of Montgomery and Vaughan [10] which
shows that E1(N) � N1−δ for some small δ > 0. One may seek to gain greater
insight regarding the nature of any possible exceptional set by investigating the ex-
tent to which natural numbers in thinner sequences are represented in the proposed
manner. The literature concerning such questions is presently enjoying a phase of
rapid expansion, and now includes material on short intervals (see, for example,
Ramachandra [13], Perelli and Pintz [12], Languasco and Perelli [9] and Baker,
Harman and Pintz [1]), polynomial sequences (see Perelli [11]), and even rather
sparse sequences provided by such sets as {[exp((log n)γ)] : n ∈ N} for 1 < γ < 3/2
(see Brüdern and Perelli [3]). The goal of this paper is to provide methods for
the binary Goldbach problem which address the problem of providing more refined
information concerning exceptional sets in polynomial sequences.

In order to set the scene for the specific problem at hand, we recall a result
of Perelli [11]. Let Φ ∈ Z[x] be a polynomial of degree k with positive leading
coefficient, and let Ek(N ; Φ) denote the number of natural numbers n with 1 ≤ n ≤
N for which the equation

2Φ(n) = p1 + p2
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has no solution in primes p1, p2. Then Perelli shows that for any positive number
A one has

Ek(N ; Φ) �A,Φ N(log N)−A, (1)

whence almost all values of the polynomial 2Φ(n) are the sum of two primes. We
are able to improve considerably the quality of the estimate (1). Thus, in §4, we
establish the following theorem.

Theorem 1. Let Φ ∈ Z[x] be a polynomial of degree k with positive leading coef-
ficient, and let Ek(N ; Φ) be as defined in the previous paragraph. Then there is an
absolute constant c > 0 such that

Ek(N ; Φ) �Φ N1−c/k.

We remark that estimates of the strength provided by Theorem 1 are not even
available in the literature under the assumption of the Riemann Hypothesis for
Dirichlet L-functions (see Perelli [11]). With little additional effort it is possible
to establish a significantly stronger conclusion than that of Theorem 1 in the case
that Φ(t) = tk, provided that one is prepared to restrict attention to smooth values
of t. Let

A(P,R) = {n ∈ [1, P ] ∩ Z : p prime, p|n ⇒ p ≤ R}.

Also, let Ẽk(N,R) denote the number of natural numbers n ∈ A(N,R), for which
the equation 2nk = p1 + p2 has no solution in primes p1, p2.

Theorem 2. There exist positive absolute constants η0 and θ such that for every
natural number k, whenever 0 < η < η0, and R is a real number with Nη/2 < R ≤
Nη, then one has

Ẽk(N,R) �k,η N1−θ.

We refer the reader to our earlier paper [2] for a lengthy discussion concerning
the broad ideas and philosophy underlying our approach to estimating exceptional
sets in thin sequences. For now, suffice it to say that we consider the possible set
of exceptions in the binary Goldbach problem directly, employing an exponential
sum over the latter exceptions, and exploiting mean values of this sum within
our application of the Hardy-Littlewood method. It is crucial to our argument
that this exponential sum preserve arithmetic information concerning the set of
exceptions, information which is lost, or at least exploited rather inefficiently, in
more traditional approaches involving the use of Bessel’s inequality.

Throughout, the letter ε will denote a sufficiently small positive number. We take
N to be the basic parameter, a large real number depending at most on k, ε, and
any coefficients of implicit polynomials if necessary. We use � and � to denote
Vinogradov’s well-known notation, implicit constants depending at most on k, ε
and implicit polynomials. Also we write [x] for the greatest integer not exceeding
x. Summations start at 1 unless indicated otherwise. In an effort to simplify our
analysis, we adopt the following convention concerning the parameter ε. Whenever



ADDITIVE REPRESENTATION IN THIN SEQUENCES, II 3

ε appears in a statement, we assert that for each ε > 0 the statement holds for
sufficiently large values of the main parameter. Note that the “value” of ε may
consequently change from statement to statement, and hence also the dependence
of implicit constants on ε.

2. An averaged minor arc contribution. A little preparation is required before
embarking on our quest for Theorem 1 in earnest. Let Φ ∈ Z[t] be a polynomial of
degree k with positive leading coefficient. It is convenient to write κ = 2−1/k. Let
E∗k (N ; Φ) denote the number of natural numbers n, with κN < n ≤ N , for which
the equation

2Φ(n) = p1 + p2 (2)

has no solution in primes p1, p2. We aim to show that there is an absolute constant
c > 0 such that E∗k (N ; Φ) � N1−c/k. The conclusion of Theorem 1 follows by
collecting together the exceptional n from intervals κlN < n ≤ κl−1N where l ∈ N.

Let N be a large real number, and write X = 2Φ(N). Then plainly one has
X � Nk. We take δ to be a sufficiently small, though fixed, positive real number
to be chosen later, and write P = X6δ. We define the exponential sum S(α) by

S(α) =
∑

P<p≤X

(log p)e(αp),

where the summation is over prime numbers, and when B ⊆ [0, 1] we write

r(n;B) =
∫

B

S(α)2e(−αn)dα. (3)

For brevity we write r(n) = r(n; [0, 1]) and note that r(2Φ(n)) counts the solutions
of (2) with weight (log p1)(log p2). We apply the Hardy-Littlewood method, defining
the major arcs M to be the union of the intervals

M(q, a) = {α ∈ [0, 1] : |qα− a| ≤ PX−1}

with 0 ≤ a ≤ q ≤ P and (a, q) = 1. We define the minor arcs m by m = [0, 1] \M,
and note that for each n with κN < n ≤ N one has

r(2Φ(n)) = r(2Φ(n);M) + r(2Φ(n);m). (4)

We first show that on average the contribution of the minor arcs in (4) is small.
It is here that we profit handsomely compared to previous treatments.

Lemma 1. There is a positive real number a = a(δ), depending at most on δ, such
that ∑

κN<n≤N

|r(2Φ(n);m)| � XN1−a/k.
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Proof. Motivated by the observation that the expression r(l;m) is real for every
natural number l, we define η(l) for each l ∈ N by

η(l) =
{

1, when r(l;m) ≥ 0,

−1, when r(l;m) < 0.

Thus it follows from (3) that∑
κN<n≤N

|r(2Φ(n);m)| =
∫

m

S(α)2K(−α)dα, (5)

where
K(α) =

∑
κN<n≤N

η(2Φ(n))e(2Φ(n)α).

We next observe that when t is an even natural number, then the mean value∫ 1

0
|K(α)|tdα counts the number of solutions of an underlying diophantine equation,

with each solution counted with weight at most 1 in modulus, whence it follows
that ∫ 1

0

|K(α)|tdα ≤
∫ 1

0

∣∣∣ ∑
n≤N

e(2Φ(n)α)
∣∣∣tdα.

Let
t = 2[(2− log δ)]k2. (6)

Then, by combining a classical version of Vinogradov’s mean value theorem (see,
for example, Vaughan [15], Theorem 5.1) with Theorem 1 of Ford [8], one obtains
for each integer m with 1 ≤ m ≤ k the estimate∫ 1

0

|K(α)|tdα � N t−k+∆/m,

where
∆ = 1

2k2 exp(−(t− 2k −m(m− 1))/(2k2)) < δk2.

We take m = k and thereby deduce that∫ 1

0

|K(α)|tdα � N t−(1−δ)k. (7)

Finally, we note that by orthogonality one has∫ 1

0

|S(α)|2dα =
∑

P<p≤X

(log p)2 � X log X, (8)

and that by Vaughan [15], Theorem 3.1,

sup
α∈m

|S(α)| � XP−1/2(log X)4 � X1−3δ(log X)4. (9)
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On applying Hölder’s inequality to (5), one obtains

∑
κN<n≤N

|r(2Φ(n);m)| ≤
(

sup
α∈m

|S(α)|
)2/t( ∫ 1

0

|S(α)|2dα
)1−1/t( ∫ 1

0

|K(α)|tdα
)1/t

,

whence, on recalling that X � Nk and making use of (7)–(9), we conclude from (6)
that ∑

κN<n≤N

|r(2Φ(n);m)| � N1−k(1−δ)/t(X log X)1−1/tX(2−6δ)/t(log X)8/t

� NX1−5δ/t(log X)3,

and the desired conclusion follows immediately.

3. The major arc contribution. Our treatment of the major arc contribution
in (4) depends heavily on the work of Montgomery and Vaughan [10], and in order
to make use of the latter we will require some additional notation. Recall that there
exists a positive constant c1 > 0 such that

L(σ, χ) 6= 0 for σ ≥ 1− c1

log P
, (10)

for all primitive Dirichlet characters χ of modulus q ≤ P , with the possible ex-
ception of at most one real primitive character, henceforth called the exceptional
character. If such a character exists, we write χ̃ for this exceptional character, and
r̃ for its modulus. It then follows that L(s, χ̃) has a unique zero β̃ violating (10),
and moreover one has

r̃−1/2(log r̃)−2 � 1− β̃ ≤ c1

log P
, (11)

in which the implicit constant is absolute. We refer the reader to Davenport [6],
Chapter 14, for an account of such matters.

Lemma 2. Suppose that Y is a real number with 1 ≤ Y ≤ Xδ/k. Then one has

r(2Φ(n);M) � XY −1/2(log X)−1

for all n satisfying κN < n ≤ N , with the possible exception of O(N1+εY −1) values
of n.

Proof. For the proof of this lemma we follow closely §8 of Montgomery and Vaughan
[10]. In this context it may be useful to the reader to note that the expression R1(n)
in the latter corresponds to r(n;M) in the present paper.

Suppose first that there is no exceptional character. Then as in §8 of Montgomery
and Vaughan [10], it follows that for κN < n ≤ N one has

r(2Φ(n);M) � X, (12)
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and the conclusion of the lemma is immediate. Suppose then that the exceptional
character exists. Then again we find from Montgomery and Vaughan [10], §8,
that when κN < n ≤ N and (2Φ(n), r̃) = 1, one has the lower bound (12). We
therefore deduce that the lemma will follow on showing that the number of integers
n satisfying κN < n ≤ N for which

(2Φ(n), r̃) > 1 and r(2Φ(n);M) � XY −1/2(log X)−1,

is at most O(N1+εY −1).
Observe next that when (2Φ(n), r̃) > 1, one has χ̃(2Φ(n)) = 0. Under such cir-

cumstances, it follows from equations (6.1̃7) and (7.1̃) of Montgomery and Vaughan
[10] that

|r(2Φ(n);M)− 2Φ(n)S(2Φ(n))− Ĩ(2Φ(n))S̃(2Φ(n))| ≤ c2(T1 + T2), (13)

where c2 is a positive absolute constant,

T1 = X1+δP−1(2Φ(n), r̃), T2 =
2Φ(n)

ϕ(2Φ(n))
(1− β̃)Xe−c3/δ log P, (14)

and here again c3 is a positive absolute constant, the function ϕ denotes the Euler
totient, and for the purposes of the present discussion it suffices to note that by
(6.16), (6.18), (8.5) and the argument following (6.1̃7) of Montgomery and Vaughan
[10], one has for each n with κN < n ≤ N ,

S(2Φ(n)) ≥ Φ(n)
ϕ(2Φ(n))

≥ 1, (15)

Ĩ(2Φ(n)) ≤ (2Φ(n))β̃ ≤ 2Φ(n), (16)

|S̃(2Φ(n))| ≤ S(2Φ(n))
∏
p|r̃

p-6Φ(n)

(p− 2)−1. (17)

We note further that since r̃ is the modulus of a real primitive character, then
necessarily r̃ takes the shape

r̃ = 2vu, (18)

where v and u are integers with 0 ≤ v ≤ 3, 2 - u and µ(u)2 = 1.
Since r̃ takes the shape (18) with u squarefree, the integers n with κN < n ≤ N

and (2Φ(n), r̃) > Y number at most∑
d|r̃

d>Y

∑
n≤N

d|2Φ(n)

1 �
∑
d|r̃

d>Y

dε(1 + N/d) � N1+εY −1.
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In consequence, we may discard these integers without loss, counting them amongst
the possible exceptions of the statement of the lemma. Suppose then that n is an
integer with κN < n ≤ N and 1 < (2Φ(n), r̃) ≤ Y . Then one finds from (14) that

T1 ≤ X1−δY −1/2. (19)

Further, if the product in (17) is non-empty, then it follows from (13)–(17), (19)
and (11) that when δ is sufficiently small in terms of c1, c2, c3, one has

r(2Φ(n);M) ≥ (1− 9c1c2e
−c3/δ)S(2Φ(n))Φ(n) � X,

and the bound (12) again holds.
Suppose then that the product in (17) is empty, whence by (18) one has

(2Φ(n), r̃) ≥
∏
p|r̃
p>3

p ≥ r̃

24
.

Since by hypothesis we have (2Φ(n), r̃) ≤ Y , it follows that r̃ � Y . We therefore
deduce from (16), together with (6.21) of Montgomery and Vaughan [10], that for
each such n with κN < n ≤ N one has

2Φ(n)S(2Φ(n)) + Ĩ(2Φ(n))S̃(2Φ(n)) ≥ c4Φ(n)S(2Φ(n))(1− β̃) log P

for a certain absolute positive constant c4. For this last class of integers n, therefore,
it follows from (13), (14) and (19) that

r(2Φ(n);M) ≥ (c4 − 9c2e
−c3/δ)S(2Φ(n))Φ(n)(1− β̃) log P + O(X1−δY −1/2)

whence by (11), (15) and our earlier observation that r̃ � Y , we conclude that
whenever δ is sufficiently small in terms of c1, c2, c3, c4, one has

r(2Φ(n);M) � XY −1/2(log X)−1. (20)

Collecting together our earlier conclusions, we find that the lower bound (20)
holds for all integers n satisfying κN < n ≤ N , with at most O(N1+εY −1) possible
exceptions. This completes the proof of the lemma.

4. The proofs of Theorems 1 and 2. The proof of Theorem 1 may now be
swiftly overwhelmed. We take δ to be a fixed positive number sufficiently small
in the context of Lemmata 1 and 2, and write τ = 1

2 min{δ, a(δ)}. We then take
Y = Nτ/k, and note that by Lemma 1 we have

r(2Φ(n);m) � XY −1
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for each integer n satisfying κN < n ≤ N , with at most E1 possible exceptions,
where E1 satisfies

E1 �
Y

X

∑
κN<n≤N

|r(2Φ(n);m)| � Y N1−a/k � NY −1.

On the other hand, it follows from Lemma 2 that (20) holds for all integers n with
κN < n ≤ N , with at most O(N1+εY −1) possible exceptions. On recalling (4),
we find that r(2Φ(n)) > 0 for each integer n with κN < n ≤ N , with at most
O(N1−τ/k+ε) possible exceptions. The conclusion of Theorem 1 is now immediate.

So far as the proof of Theorem 2 is concerned, we note merely that the methods
of Wooley [18] (see the corollary to Wooley [19], Theorem 2.1; the methods of
Vaughan [14] would also suffice for our purpose) show that with t = 2[(2− log δ)]k,
one has for sufficiently small η the bound∫ 1

0

∣∣∣ ∑
κN<n≤N
n∈A(N,R)

e(αnk)
∣∣∣tdα �η N t−k+∆,

where ∆ = k exp(1− t/k) < δk. Then the argument of the proof of Lemma 1 shows
that for some positive real number a = a(δ) ≤ δ,∑

κN<n≤N
n∈A(N,R)

∣∣∣ ∫
m

S(α)2e(−2nkα)dα
∣∣∣ �η XN1−a,

and here again we use the definitions introduced in §2 of this paper. But Lemma 2
shows that ∫

M

S(α)2e(−2nkα)dα � XN−a/3

for all n with κN < n ≤ N and n ∈ A(N,R), with the exception of at most
O(N1−a/2) values of n. Then on recalling that our hypotheses concerning R ensure
that card(A(N,R)∩ [κN,N ]) �η N , we may apply the argument used to conclude
the proof of Theorem 1 to deduce that for each integer n satisfying n ∈ A(N,R) ∩
[κN, N ], with at most O(N1−a/10) possible exceptions, one has r(2nk) > 0. When
η0 is sufficiently small but positive, the conclusion of Theorem 2 is immediate.
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